Volume 11, Number 1, Spring 2016

Evaluation of the Radiobiological Effects and Medical Care Solutions after a Nuclear Detonation

Amin Banaei1*

¹Department of Radiology, Faculty of Paramedical Sciences, AJA University of Medical Sciences, Tehran, Iran

Abstract

Introduction: Individual exposure after a nuclear detonation (atomic bomb) delivers abundant doses with high dose rates to the people who were located near the nuclear detonation location or within the fallout zone. Effects of the radiation to the humans and animal models will be studied and a fundamental ground work of medical services and managing systems for such accidents would be provided in this article.

Methods and Materials: This research is theoretical and analytical method that was performed by searching care proceedings, nuclear detonation, radiobiological effects, acute radiation syndrome and radiation accidents key words in the Google Scholar, Science Direct, PubMed and Scopus web sites in terms of content (Content Analysis). This article was written based on the 10 chosen articles which were found after the research in the internet web sites.

Results: Whole-body doses >2 Gy which was found in the fallout zones or in the areas near the detonation location, can produce clinically significant acute radiation syndrome (ARS)(definite radiation effects), which classically involves the hematologic, gastrointestinal, cutaneous, and cardiovascular/central nervous systems. The severity and presentation of ARS are affected by several factors, including radiation dose and dose rate, inter-individual variability in radiation response, type of radiation (e.g., gamma alone, gamma plus neutrons), partial-body shielding, and possibly age, sex, and certain preexisting medical conditions. The combination of radiation with trauma, burns, or both (i.e., combined injury) confers a worse prognosis than the same dose of radiation alone. Supportive care measures, including fluid support, antibiotics, and possibly myeloid cytokines (e.g., granulocyte colony-stimulating factor), can improve the prognosis for some irradiated casualties. Available resources for the supportive and therapeutic cares were far less than demands of the extents of injuries and access to these resources for the patients and injured people will be very limited during the nuclear detonations and its consequences.

Discussion and Conclusion: Because of the leakage and hard limitations in the resources availability for supportive and medical cares, it will be impossible to apply these cares and services for all of the patients and injured people after the nuclear detonation. It is necessary to determining the patients who must receive these cares. It is more appropriate to evaluate the absorbed dose of the all injured people by applying the biological dosimetry methods. Regarding to the patient symptoms and absorbed dose, type of the ARS syndrome will be determined. After the patients division, selected patients will be undergoing medical and supportive cares. For optimal use of available resources it is necessary to provide a general plan for doing these cares and services, guidance for training people who want to do medical and supportive cares for the radiation injured patients and building a database of the radiation accidents injured patient's data. Long term radiobiological effects such as the cancer, teratogenesis, and heritable genetic effects were not evaluated and just initial effects of radiation were discussed in this study.

Keywords: Care proceedings, Nuclear detonation, Radiobiological effects, Acute radiation syndrome, Radiation accidents

^{* (}Corresponding author) Amin Banaei, Department of Radiology, Faculty of Paramedical Sciences, AJA University of Medical Sciences, Tehran, Iran. tel: +98-9372268395; E-mail: amin.banaii@modares.ac.ir

بررسی آثار رادیوبیولوژیکی و راهکارهای مراقبتهای پزشکی بعد از انفجار هستهای

امین بنایی ۱*

ا گروه تکنولوژی پرتو شناسی (رادیولوژی)، دانشکده پیراپزشکی، دانشگاه علوم پزشکی آجا، تهران، ایران

چکیده

مقدمه: تابش گیری فردی پس از یک انفجار هستهای (بمب اتمی) دوز زیادی را با آهنگ بالایی به افرادی که در نزدیکی محل وقوع انفجار و ناحیه ریزش اتمی قرار دارند، تحویل می دهد. در این تحقیق آسیبهای ایجاد شده در اثر تابش پر تو به انسان و مدلهای حیوانی مورد مطالعه قرار خواهند گرفت و اساس و پایهای برای ارائه خدمات پزشکی و روشهای مدیریتی هنگام بروز چنین حوادثی ارائه خواهد شد.

مواد و روشها: این تحقیق از نوع نظری و از لحاظ روش به شیوه تحلیل محتوا (Content Analysis) با جستجو واژههای کلیدی اقدامات مراقبتی، انفجار هسته ای، اثرات رادیوبیولوژیکی پرتو، سندرم حاد تشعشعی و سوانح تشعشعی در پایگاههای اینترنتی Scopus و پایگاههای اینترنتی و سوانح تشعشعی در پایگاههای اینترنتی اقدامات محلات به دست آمده، عد از انجام جستجو، از میان مقالات به دست آمده، مقاله بر گزیده شده و بر اساس آنها این مقاله به نگارش در آمده است.

یافته ها: تابش گیری های بیش از GV ۲ به کل بدن، که در نواحی ریزش اتمی و نواحی نزدیک تر به محل وقوع انفجار رخ می دهند، باعث ایجاد سندرم های تابشی (آثار قطعی پر تو) خواهد شد که شامل سندرم خونی، سندرم سیستم گوارشی، سندرم پوستی و سندرم سیستم اعصاب مرکزی و عروقی می گردد. ایجاد و شدت این سندرمها به فاکتورهایی نظیر دوز تابشی، آهنگ دوز، نوع پر تو تابشی (پر تو گاما، پر تو نو ترونی، پر تو گاما همراه با نو ترون و...)، حفاظت بخش هایی از بدن در برابر پر تو، سن، جنسیت، حساسیت ذاتی فرد به پر تو و اقدامات پزشکی بعدی برای درمان اثرات پر توهای یونیزان بستگی دارد. ترکیب تابش گیری فردی به همراه تروما، سوختگی یا هر دو باعث ایجاد آسیبهای بسیار بد تری نسبت به پر تو گیری به تنهایی خواهد شد. فعالیتهای پشتیبانی کننده نظیر تجویز آنتی بیوتیکها، بالا بردن و حفظ ما یعات بدن و احتمالاً سیتو کینهای مغز استخوانی و پیوند مغز استخوان می توانند باعث بهبود در بر خی از آسیبهای ایجاد شده پر تویی گردند. منابع موجود و در در در سترس برای انجام مراقبتهای پشتیبانی کننده و درمانی نسبت به افراد آسیب دیده، بسیار کمتر بوده و دسترسی به همین منابع هنگام وقوع انفجارهای هستهای برای بیماران، بسیار محدود می باشد.

بحث و نتیجه گیری: به دلیل کمبود شدید در منابع موجود و در دسترس برای انجام مراقبتهای درمانی و پشتیبانی کننده، نمی توان این مراقبتها را برای همه افراد آسیب دیده اجرا نمود. بنابراین نیاز است، ابتدا افرادی که باید این اقدامات را برای آنها انجام داد، مشخص نمود. مناسب تر این است که ابتدا با روش های دوزیمتری بیولوژیکی، دوز دریافتی بیمار بررسی شده و با توجه به علائم بیمار، نوع سندرم حاد تشعشعی وی مشخص شود و پس از دسته بندی بیماران اقدام به انجام مراقبتهای درمانی از بیماران مد نظر نمود. ضروری است که با توجه به منابع محلی و ملی، برنامهای جامع برای انجام این مراقبتها برنامهای برای آموزش افرادی که بتوانند این مراقبتها را اجرا نمایند و بانک اطلاعاتیای شامل اطلاعات منابع در دسترس، برنامهای برای انجام مراقبتهای درمانی و پشتیبانی کننده و اطلاعات بیماران و آسیب دیدگان سوانح پر تویی، تهیه شود تا بتوان هنگام وقوع چنین حوادثی، استفاده بهینهای از منابع موجود، داشت. در این تحقیق آثار طولانی مدت تشعشع مانند سرطان زایی، تغییرات ژنتیکی، نقص ژنتیکی در نسلهای آینده و ... مورد بررسی قرار نگرفتهاند و تنها اثرات کوتاه مدت تشعشع مد نظر بوده است.

كلمات كليدى: اقدامات مراقبتي، انفجارهاي هستهاي، اثرات راديوبيولوژيكي، سندرم حاد تشعشعي، سوانح تشعشعي

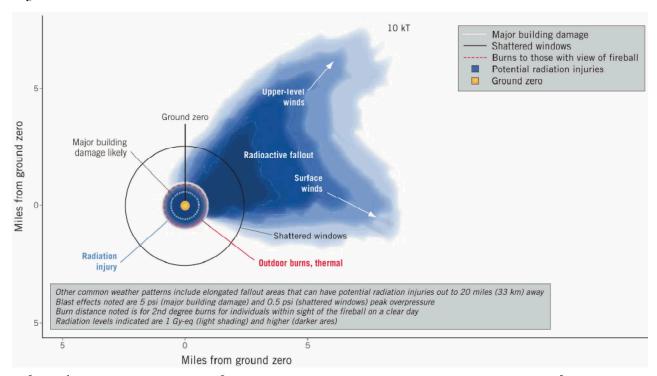
مواد و روشها

محبت از جنگهای احتمالی، این تحقیق از نوع نظری و از لحاظ روش به شیوه تحلیل محتوا (Content Analysis) با جستجو واژههای کلیدی اقدامات مراقبتی، به آثار پر تویی گردد. تابش گیری انفجارهای هستهای، اثرات رادیوبیولوژیکی پر تو، سندرم حاد باعث ایجاد سندرم های تابشی تشعشعی و سوانح تشعشعی در پایگاههای اینترنتی google scholar باعث ایجاد سندرم سیستم سندرم خونی، سندرم سیستم جستجو، از میان مقالات به دست آمده، ۱۰ مقاله برگزیده شده و همراه تروما، سوختگی یا هر

ىافتەھا

مدل سازی رایانهای انجام شده از انفجارهای هستهای ۱۰ ۱۰ ۱۰ ناحیه آسیبهای ساختاری (آسیبهای فیزیکی به محیط) را ناحیهای به شعاع ۲ مایل بر آورد نموده است که قدرت تخریبی انفجار در ۲ مایل دیگر خارج از این محدوده باعث شکسته شدن شیشهها و برخی از اجسام خواهد شد. همچنین ناحیه ریزش اتمی و ناحیهای که می تواند باعث ایجاد آسیبهای پر تویی (آسیبهای قطعی و سندرمهای پر تویی) گردد ناحیهای تا فاصله ۲۰ مایل (mx ۳۳) از نقطه انفجار را شامل می شود (۱). در شکل ۱ ناحیههای آسیب دیده در اثر انفجار اتمی نشان داده شدهاند.

می توان گفت در تمامی جهان منابع محلی با نیازهای مورد انتظار بعد از یک انفجار هسته ای به سختی در تناقض است و منابع محلی در دسترس بسیار محدود بوده و قادر به پاسخگویی نیازهای به وجود آمده پس از یک انفجار هسته ای نخواهد بود. برای مثال در کشور آمریکا هم اکنون حدود ۵۰۰ تخت بیمارستانی فعال به ازای هر میلیون نفر از جمعیت در دسترس می باشد. در کشورهای کمتر توسعه یافته و در حال توسعه انتظار بر این است که این منابع از این مقدار نیز کمتر باشند (۲). بر اساس یک مدلسازی رایانه ای که برای شهر واشنگتن آمریکا انجام شده است، حدود ۱۸۰۰۰۰ تخت برای شهر واشنگتن آمریکا انجام شده است، حدود ۱۸۰۰۰۰ تخت خالی پس از یک انفجار هسته ای به ازای هر میلیون نفر جمعیت مورد نیاز خواهد بود که در حال حاضر این شهر تنها دارای ۱۰۰۰ تخت خالی میباشد. هم چنین نیاز به حدود ۲۵۰ تخت بیمارستانی مخصوص می باشد، در حالی که هم اکنون تنها ۲۶ تخت مخصوص کودکان به طور میانگین در شهر واشنگتن در دسترس می باشد (۳). تعداد سایر تجهیزات و امکانات و امکانات


مقدمه

یکی از تهدیدهای موجود هنگام صحبت از جنگهای احتمالی، سلاحهای هسته ای می باشند که انفجار آنها می تواند باعث مرگ و آسیب صدها هزار نفر از مردم در نتیجه آثار پر تویی گردد. تابش گیری فردی در این گونه سوانح می تواند باعث ایجاد سندرم های تابشی (آثار قطعی پر تو) گردد که شامل سندرم خونی، سندرم سیستم گوارشی، سندرم پوستی و سندرم سیستم اعصاب مرکزی و عروقی می شود. ترکیب تابش گیری فرد به همراه تروما، سوختگی یا هر دو باعث ایجاد آسیبهای بسیار بدتری نسبت به پر توگیری به تنهایی خواهد شد.

در این تحقیق آسیبهای ایجاد شده در اثر تابش پرتو به انسان و مدلهای حیوانی مورد مطالعه قرار خواهند گرفت و اساس و پایهای برای ارائه خدمات پزشکی و روشهای مدیریتی هنگام بروز چنین حوادثی ارائه خواهد شد.

در مطالعهای که توسط knebel و همکارانش (۱) در این رابطه انجام شده است، سناریوهای انفجار هستهای و چارچوب پاسخ به آن توصیف شده است. انفجارهای هستهای به دو دلیل از دیگر آسیبها و تخریبهای بزرگ متمایز می شوند. نخست تعداد افراد بسیار زیادی است که از این انفجار دچار آسیب می شوند و دوم آزاد شدن پرتوهای یونیزان میباشد. بنابراین برنامهای که برای پاسخ به این انفجار باید طراحی شود، می بایست تمامی پیامدهای پرتوهای یونیزان را بر طیف وسیعی از جمعیت مد نظر قرار دهد. مقاله حاضر به طور مختصر جنبه های بالینی آسیب های پرتویی را با توجه به گزارشهایی که از سوانحی که باعث تابشدهی به افراد شده و تحقیقاتی که بر روی حیوانات انجام شده است، مورد بحث قرار میدهد. به ویژه سندرمهای قطعی تشعشعی و آثار ترکیبی تشعشع همراه با سایر جراحات، تروماها یا سوختگیهای ناشی از حرارت و تابش بررسی می گردند. همچنین اثر مراقبت های پشتیبانی کننده نظیر آنتی بیو تیکها و سیتوکینهای مغز استخوانی در کاهش اثرات کشندگی پرتویی بررسی خواهند شد.

به دلیل کمبود منابع اطلاعاتی از انفجارهای هستهای، در این تحقیق بیشتر بر روی آثار اولیه و قطعی پر تویی بعد از انفجار پرداخته شده و آثار طولانی مدت پر تویی نظیر سرطان، ناهنجاریهای ژنتیکی، اثرهای وراثتی ژنتیکی و ... مورد بحث قرار نخواهند گرفت.

شکل ۱- ناحیههای آسیب دیده در اثر انفجار اتمی، در قسمت درون دایره با نقطه چین قرمز، ناحیه آسیبهای شدید پرتو همراه با سوختگیها و آتش سوزیهای شدید به دلیل انفجار اتمی قرار دارد. درون دایره سیاه ناحیه آسیبهای ساختاری و فیزیکی است که آهنگ دوز بالایی دارد. نواحی آبی رنگ نیز ناحیه ریزش اتمی را نشان میدهند.

نظیر آمبولانس، اتاق عمل و ... از تعداد مورد نیاز بسیار کمتر می باشد. نبود وسایل حمل و نقل بیماران و محدودیت در دسترسی به افراد آسیب دیده در نواحی پرتوزای ایجاد شده و همچنین نابودی و تخریب فیزیکی شبکه حمل و نقل شهری و جاده ها باعث خواهد شد بسیاری از افرادی که دچار آسیب و جراحتهای ناشی از پرتوگیری یا سایر عوامل شده اند، در زمان مناسب از خدمات مراقبتی بهرهمند نشده و جان خود را از دست دهند. در جدول ۱ مقدار نیاز به خون و فرآورده های خونی و پوستی بعد از انفجار مقدار نیاز به خون و فرآورده های خونی و پوستی بعد از انفجار

هسته ای ۱۰ kT با رایانه مدلسازی شده و مقدار تأمین این منابع در شهر واشنگتن آورده شده است (۴).

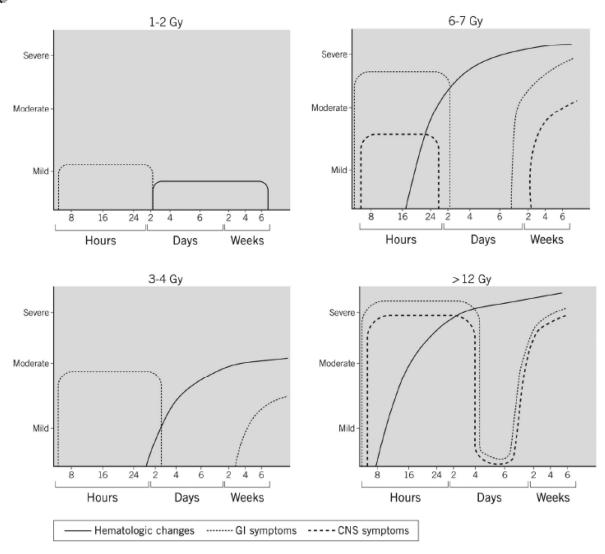
کمبود منابع پس از یک انفجار هستهای بستگی به زمان و مکان تأمین این منابع نیز دارد. به دلیل اینکه دسترسی به منابع بعد از انفجار، خیلی کم می گردد، استانداردهای عملی مراقبتهای پزشکی وابسته به محدودیتها بوده و دچار تغییر خواهد شد. انتظار بر این است که با گذشت زمان کمبود منابع در دسترس کمتر شده و دسترسی به منابع مورد نیاز بهبود یابد. همچنین این موضوع را

جدول ۱- منابع مورد نیاز و در دسترس پس از یک انفجار هستهای در شهر واشنگتن

	Symptomatic Injured People or Incident Demand Minimum/ Median/Maximum	Single Hospital	City	Nation
People injured (next column) or population of designated area (city, nation)	930 000/990 000/1.6 million	N/A	592 000	300 million
Hospital beds (unoccupied)	70 000/180 000/300 000	165 (40)	3670 (920)	947 000 (295 000)
Intensive care unit beds (unoccupied)	24 000/61 000/110 000	20.5 (1.6)	N/A	118 000 (9400)
Operating rooms	N/A	6	N/A	30 000
Burn beds (unoccupied)	0/0/1100	N/A	32 (5)	1760 (580)
Ambulances	N/A	N/A	38	48 400

- FA

نیز باید مد نظر داشت که بسیاری از بیمارستانها و مراکز درمانی تنها دارای امکانات خاص بوده و بسیاری از آنها ممکن است امکانات مورد نیاز به منظور مراقبتهای درمانی بیماران سوانح هستهای را دارا نباشند.


اثرات پر توها بر روی بدن بستگی به دوز کلی، آهنگ دوز، کیفیت تابش و بخشی از بدن که تحت تابش قرار می گیرد، دارد. دوزهای بیشتر، آهنگ دوز بالاتر و بیشتر شدن سهمی از بدن که تحت تابش قرار می گیرد، باعث بیشتر شدن آسیبهای پر تویی می گردند. تابش یکسانی از یک نوع پرتو در افراد مختلف می تواند باعث ایجاد نشانهها و امراض مختلفی در جمعیت گردد. عوامل مختلفی نظير ژنتيک، ساختار بدن، نوع تغذيه و... مي تواند باعث تغيير در آسیبهای پرتویی شود. اما این تفاوتهای ذاتی در افراد مختلف و دلایل آن هنوز به طور کامل فهمیده نشده است. بنابراین اگرچه میزان و نوع تابش پر تویی را می توان به عنوان راهنمایی در مدیریت اقدامات درمانی اولیه به کاربرد، اما هر فرد بر اساس نیاز فردیاش و منابع در دسترس نیاز به برنامه درمانی جداگانهای خواهد داشت. در مطالعه Knebel و همكارانش (۱)، ۲ گروه از افراد تابشديده مورد بررسی قرار گرفتند. گروه نخست افرادی بودند که در فاصله ۱ تا ۲ کیلومتر از انفجار ۱۰ kT هسته ای قرار داشتند و دوز بالایی را به طور ناگهانی با آهنگ دوز بسیار بالایی دریافت نمودهاند. همچنین این افراد به دلیل نزدیک بودن به منبع انفجار دچار تروماهای شدید و جراحات ناشی از سوختگی نیز شدهاند. گروه دوم در ناحیه ریزش اتمی (جایی که مواد پرتوزا ناشی از قارچ انفجار هستهای محیط را می پوشاند) قرار داشتند. آهنگ دوز در این ناحیه کمتر از ناحیه نزدیک به انفجار بوده و با زمان به سرعت کاهش می یابد. همچنین از دیدگاه بالینی دوز رسیده به افراد در این ناحیه کمتر از افرادی است که در گروه اول ذکر شدند. افرادی که در این ناحیه قرار داشتند، معمولاً تنها دچار تابشگیری شده و از سوختگی، جراحت یا تروما مصون ماندهاند.

پس از تابشگیری و دوز دریافتی کمتر از Gy ۱ به کل بدن، نشانههای کمی از این آثار می تواند بروز کند. چنانچه دوز دریافتی بیش از Gy ۲ باشد، باعث ایجاد سندرمهای حاد تشعشعی خواهد شد. سندرم حاد تشعشعی به صورت برخی از علائم و نشانهها که می توانند از چند دقیقه تا چند هفته بعد از تابشدهی بروز نمایند،

تعریف می گردند (۷–۵). سندرم حاد تشعشعی در ابتدا ۴ سیستم بدن را که بیشترین حساسیت را نسبت به پر تو دارند، در گیر می کند. این سیستمها شامل سیستم گردش خون، دستگاه گوارش، پوست و سیستم عصبی و قلبی -عروقی مرکزی می گردند. شکل ۲ زمان بروز و مقدار نشانههای سندرم حاد تشعشعی را بر اساس دوز تابشی نشان می دهد.

سندرم حاد تشعشعی به طور کلاسیک دارای ۴ فاز بالینی شامل: نشانههای اولیه، دوره نهفتگی، دوره ظهور بیماری و مرگیاریکاوری می باشد. فاز نخست (نشانههای اولیه) را می توان با داشتن حالت تهوع، استفراغ، خستگی و در دوزهای بالاتر با حالت ناپایداری در اراده فردی (از خود بیخود شدن) یا حتی از دست دادن هوشیاری مشخص نمود (۸). دوره نهفتگی را می توان با مدت زمان بروز قسمتی یا تمامی علائم مربوط به سندرم مشخص نمود. مدت زمان بیشتر از ۶ گری را به تمام بدن دریافت نمودهاند، ممکن است دوره بیشتر از ۶ گری را به تمام بدن دریافت نمودهاند، ممکن است دوره نهفتگی خیلی کوتاه بوده یا اصلاً وجود نداشته باشد. در این موارد فرد در چندین ساعت الی چند روز پس از تابشدهی، ارگانهای قرد در چندین ساعت الی چند روز پس از تابشدهی، ارگانهای

به دلیل حساسیت بالای سلولهای خونی به تابشدهی و مرگ اپیتوزی آنها در اثر تابش، آثار تابشدهیهایی با دوز کمتر از Gy ۱ نيز بر روى سيستم گردش خون پيراموني قابل ملاحظه است (٩). لنفوسیتها نیز به نسبت به تابش حساس هستند و کم شدن تحرک لنفوسیتها می تواند به عنوان ابزاری برای ارزیابی میزان تابش استفاده شود (۱۰). البته مشاهده شده است که بیمارانی که تنها دچار سوختگی یا تروما بدون هرگونه تابشدهی شدهاند نیز ممکن است چنین آثاری را بر روی لنفوسیتهای خود تجربه کنند (۱۱، ۱۲). در بسیاری از سوانح منجر به تابشدهی، بیماران دوز نایکنواختی را در بافت بدن خود به دلیل شیلد شدن و حفاظت شدن بخش هایی از بدن (به دلیل بلوکه شدن تابش توسط ساختمانها یا ساختارهای دیگر) دریافت می کنند. اگر حجم کوچکی از مغز استخوان، حفاظت شده و تابش گیری نکرده باشد، آنگاه امکان بازسازی و ریکاوری خونی وجود خواهد داشت، حتى اگر بخشهاى عمدهاى از مغز استخوانهاى بدن دچار آسیبهای برگشت ناپذیر تشعشعی شده باشند. ناهمگنی یا نایکنواختی دوز میان بیمارانی که در ناحیه ریزش اتمی قرار دارند،

شکل ۲- زمان بروز و مقدار نشانههای سندرم حاد تشعشعی بر اساس دوز تابشی

کمتر مشاهده شده است، چرا که ریزش اتمی کل آن ناحیه را در برگرفته و تابشدهی به همه قسمتهای بدن روی خواهد داد (۴). شمارش گلبولهای سفید خون نیز می تواند به عنوان ابزاری برای بررسی میزان تابش گیری مورد استفاده قرار گیرد (۹). مستندات به دست آمده از سوانح تابشی، یک افزایش گذرا را در شمارش گرانولوسیتها نشان می دهد که اگر به دنبال آن ۱۱الی ۱۵ روز کاهش را نشان دهد، می تواند نشان دهنده سندرم حاد تشعشعی خونی برگشت پذیر باشد و شانس نجات فرد بیمار افزایش می یابد. بر خلاف حالت ذکر شده، سندرم حاد تشعشعی خونی برگشت ناپذیر، الگوی دیگری از شمارش گرانولوسیتها را نشان می دهد که در آن تعداد گرانولوسیتها در ۴ الی ۶ روز اول به شدت کاهش ییدامی کند (۱۳). مرگ در اثر سندرم حاد تشعشعی خونی می تواند

توسط دوزهایی در بازه ۲ تا ۶ گری ایجاد گردد و نوعاً ۲ تا ۸ هفته پس از تابش گیری رخ خواهد داد. سندرم حاد تشعشعی دستگاه گوارش با دوزهایی بیش از ۵ تا ۶ گری ایجاد شده و باعث مرگ فرد ۱ تا ۲ هفته بعد از تابش گیری خواهد شد. در دوزهایی بین ۸ تا ۱۰ گری سندرم حاد تشعشعی قلبی عروقی و سیستم اعصاب مرکزی گری سندرم حاد تشعشعی قلبی عروقی و سیستم اعصاب مرکزی روی داده و باعث مرگ فرد چندین روز پس از تابش گیری خواهد شد. تنها سندرمی که می توان امید به بهبودی آن داشت، سندرم حاد تشعشعی خونی است. در دوزهای بالاتر که سندرمهای دیگری نیز بروز می کنند، شانسی برای بقا بیمار و جود نخواهد داشت (۶، ۱۴). راهکارهایی که برای افزایش زمان زنده ماندن افراد دچار سندرمهای حاد تشعشعی و جود دارد شامل استفاده از داروهای آنتی بیوتیک، نگهداری فرد در محیط استریل، ساپورت مایعات برای بیمار و نخواهد دار و بیمار و نزده مایعات برای بیمار و

Downloaded from jps.ajaums.ac.ir on 2025-12-15]

انتقال خون می باشد. این راهکارها می توانند . $D_{0.75}$. که تنها ۵۰ درصد از جمعیت پس از گذشت ۶۰ روز از یک تابشدهی مشخص زنده می مانند) را از 7/4 به ۶ الی ۷ گری برسانند. البته هنوز مشخص نیست که این مراقبتها بتوانند شانسی برای جلو گیری از مرگ زو درس بیمار به وجو د بیاورند (۲).

الف) منابع اطلاعاتی آسیبهای تشعشعی انفجار بمب هستهای

افراد آسیب دیده از انفجارهای هستهای هیروشیما و ناکازاکی برای بیش از ۶ دهه مورد مطالعه قرار گرفتهاند. بیش از ۷۰٪ از آسیب دیدگان بعد از انفجار دارای آسیبهای ترکیبی (تابش گیری همراه با تروما یا سوختگی) بودند (۱۷–۱۵). انفجار هیروشیما و ناکازاکی در هوا روی داد، اما انفجار در هوا باعث ایجاد آسیبهای بیشتری از نوع ترکیبی نسبت به انفجار بر روی زمین می باشد (۴). به علاوه هر دو شهر ژاپنی یاد شده دارای ساختمانهای چوبی زیادی بوده که آتش سوزیهای ثانویه و خرابیهای بزرگی را در پی داشتهاند. نکتهای که اهمیت دارداین است که مراقبتهای پزشکی بسیار اندکی پس از انفجارهای هیروشیما و ناکازاکی در دسترس بودهاند و بنابر پس از انفجارهای هیروشیما و ناکازاکی در دسترس بودهاند و بنابر این نمی توان اهمیت مراقبتهای پزشکی را مورد بررسی قرار داد.

سوانح تشعشعی صنعتی و پزشکی

بین سالهای ۱۹۴۴ تا ۲۰۰۳، ۴۶ سانحه تشعشعی در کل جهان روی داد و ۱۳۰۰۰۰ نفر در این سوانح دچار آسیب شدند. ۹۰٪از این افراد در حادثه چرنوبیل که در سال ۱۹۸۶ روی داد، دچار آسیب شدند. سایر سوانح، آسیبهای خیلی کمی را به دنبال داشتهاند (۱۸). در نتیجه امکانات و مراقبتهای پیشگیری کننده برای این افراد در دسترس بودهاند. بانک اطلاعاتی از سوانح هستهای در مرکز امداد و اورژانس تشعشعی /Radiation Emergency Assistance Center و جود دارد (۱۹)، اما به صورت دسترسی آزاد در اختیار دیگران قرار نگرفته است.

مدلهای حیوانی

در جدول ۲ حساسیت پستانداران مختلف در پرتودهی به کل بدن آورده شده است. همانطور که مشاهده می شود، تفاوتهای قابل

جدول ۲- حساسیت پستانداران مختلف در پرتودهی به کل بدن

Species	LD _{50/30} , cGy	Mean survival times, d
Goat	240	ND
Swine	250	17
Dog	250	15
Burro	255	ND
Guinea pig	450	12
Monkey	600	14
Hamster	610	ND
Mouse	640	10
Mouse (germ-free)	705	ND
Rat	714	12
Rabbit	750	10
Hamster	856	ND
Mongolian gerbil	1000	10

توجهی در حساسیت حیوانات به پرتو با $LD_{0./6}$ در بازه ۱۰۰ تا Υ^{6} سانتی گری وجود دارد (۲۰).

باید به این نکته اشاره کرد که با توجه به نوع سندرم تشعشعی مورد نظر برای مطالعه، مدلهای حیوانی متفاوتی مناسب خواهند بود. به عنوان مثال از خوکها به طور گسترده برای مدلسازی آسیبهای تابشی به پوست در انسان استفاده می شود. حیوانات جونده به ویژه موشها به صورت گسترده برای یافتن ساز و کار، اثبات مبانی علمی و بررسی آسیبهای بالینی جدید ناشی از پرتوها مورد استفاده قرار می گیرند. رتها بیشترین استفاده را در بین سایر حیوانات برای بررسی اثر رادیوداروها دارند. همچنین از آنها برای تعیین و بررسی سینتیک و دینامیک داروهای جدید بهره برده می شود (۲۱، ۲۲).

ب) فاکتورهای مؤثر بر اثرات بیولوژیکی تشعشع

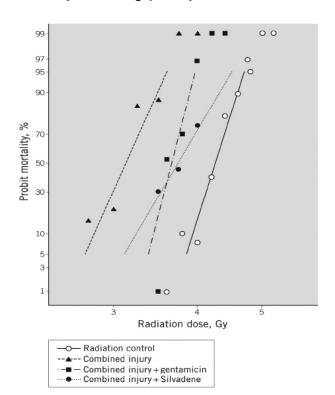
عوامل تأثیر گذار بر اثرات و آسیبهای پر تویی شامل دوز تابشی، کیفیت و نوع پر تو، آهنگ دوز، میزانی از بدن که تحت تابش قرار می گیرد، حساسیت ذاتی فرد به پر توها، آسیبهای دیگر شامل تروماها و انواع سوختگی، سن و جنسیت می باشند. حتی ساعتی از روز که تابشدهی رخ می دهد نیز می تواند عاملی تأثیر گذار به حساب آید (۲۳). ثابت شده است که نوع تغذیه و آب مورد استفاده توسط فرد نیز در بروز اثرات بیولوژیکی تشعشع فاکتورهای مؤثری محسوب می شوند (۲۲). در ادامه به برخی از عوامل تأثیر گذار در

یی (۵)

نتیجه آسیبهای تشعشعی که بیشتر در انفجارها و سوانح هستهای اهمیت پیدا میکنند، میپردازیم.

یر توگیری به همراه جراحت

بر اساس چندین مشاهده بر روی انسانها و مدلهای حیوانی، ترکیب تابش با تروماها یا سوختگی باعث افزایش چشمگیری در کشندگی این آثار نسبت به تابش گیری تنها با همان دوز می شود. در مطالعهای که توسط Ledney و همکارانش (۲۵) انجام شده است، مقدار ۲۵٫۳۰٫۰۰۰ در موشهایی که فقط تابش گیری داشته اند حدود مقدار ۹۶۳ cGy و در موشهایی که دچار سوختگی غیر کشنده در ۱۵٪ از سطح بدنشان به همراه همان تابش گیری شده بودند، ۲۵۰ گزارش شده است. چنانچه موشها دچار زخمهای عمیق غیر کشنده همراه با تابش گیری شده باشند، مقدار ۴۰٫۳۰٬۰۰۰ کاهش می یافت. در تحقیقی دیگر، در سگهایی با به ۲۰٪ سوختگی غیر کشنده از سطح بدن و تابش گیری با دوز ۱ Gy به تمام بدن، مرگ و میر تا ۷۲٪ افزایش پیدا می کرد (۲۶).


در رتها سوختگیای که باعث مرگ و میری به میزان ۵۰٪ می شد، چنانچه با دوز تابشی ۱ Gy ترکیب می گردید، مرگ و میری به میزان ۶۳٪ را در پی داشت و چنانچه با دوز تابشی ۲/۵ همراه می شد، مرگ و میر ۱۰۰٪ را به دنبال داشت (۲۷). نتایج مشابهی از ترکیب سوختگی و تابشدهی بر روی خوکها (۲۸) و خوکهای گینهای (۲۸) گزارش شدهاند.

توجیهی که برای ترکیب دوزهای زیر کشنده و سوختگی یا جراحات که باعث به وجود آمدن آثار کشنده می شود این است که با ایجاد سوختگی یا جراحات غیر کشنده، باکتریها و عوامل ایجاد کننده عفونت وارد بدن شده و سیستم ایمنی بدن که توسط تابشدهی ضعیف شده است، قادر به مقابله با عوامل عفونت زا نخواهد بود (۳۰، ۳۱). در نتیجه جمع آثار تابش و جراحات یا سوختگیهای منجر به عفونت، اثر بسیار قابل ملاحظه تری از آثار هر یک از آنها به تنهایی خواهد داشت. در واقع گزارشهایی وجود دارد که حتی دوز به کمی Gy را همراه با عفونت باکتریایی دارای آثار کشنده دانسته اند (۳۲). مشاهدات انسانی با اینکه نتایج مشابهی را بیان می کنند، اما اطلاعات مربوط به آنها خیلی کم بوده و قابل استفاده نمی باشند (۳۳).

مراقبتهای پشتیبانی کننده

دادههای موجود نشاندهنده آن هستند که مراقبتهای پشتیبانی کننده بعد از سوانح تشعشعی، می توانند به شدت مؤثر واقع شوند (۳۴). در مدلهای حیوانی مراقبتهایی که تحت عنوان پشتیبانی معمولی (normal support) دستهبندی می شوند، شامل تهیه غذای مناسب، فرآوردههای خونی، آنتی بیوتیکها و در برخی از موارد مواد غذایی مهاسب، فرآوردههای خونی، آنتی بیوتیکها و در برخی از موارد مواد غذایی مهاسب، فرآوردههای خونی، آنتی بیوتیکها و در برخی از موارد مواد فردی و منحصر به فرد شده برای هر نفر تعریف شده و شامل فردی و منحصر به فرد شده برای هر نفر تعریف شده و شامل سایتوکینها و (HSCT (Hematopoietic stem cell transplantation) یا پیوند سلولهای بنیادین خون ساز (پیوند مغز استخوان) می گردد. به علاوه مدیریت آسیبهای ترکیبی هم به صورت جراحی و هم بدون جراحی، مؤلفه مهمی در مراقبتهای پشتیبانی کننده به حساب می آید.

مجموعهای از مطالعات انجام شده تأثیر آنتیبیوتیکها و انتقال پلاکتها را به سگهای تابشدیده (۳۷–۳۵) نشان دادهاند. آنتیبیوتیکها همچنین در موشهای دچار آسیب ترکیبی باعث بهبود زنده ماندن شدهاند (۳۸). شکل ۳ اثر داروی آنتیبیوتیک gentamicin و gentamicin را بر روی موشهای دارای جراحت که با

شکل ۳-اثر داروی آنتی بیو تیک silvadene یا gentamicin ابر روی موشهای دارای جراحت که با دوزهای مختلفی تابشدهی شدهاند

جدول ۳- مقادیر مختلف .LDo بر حسب گری برای انسان، و ماکاکهای ریسوس برای تابشدهی با پرتوهای مختلف و مراقبتها در سطوح مختلف

Pure γ LD ₅₀				x-ray LD ₅₀		Mixed γ and Neutron LD_{50}			
Level of Support			Level of Support		Level of Support				
Species	None	Normal	Heroic	None	Normal	Heroic	None	Normal	Heroic
Human	ND	4.7	ND	ND	ND	ND	3.1	4.1, 4.1	8.9
Rhesus	4.4, 6.4	ND	ND	4.8, 6.7	4.9, 5.3	9	4, 3.8	2.6	4.4

دوزهای مختلفی تابشدهی شدهاند را نشان میدهد (۳۸).

این نتایج اثر مثبت داروهای آنتی بیوتیک را هنگام بروز آسیبهای ترکیبی نشان می دهد. پیش بینی شده است که مراقبتهای پشتیبانی کننده در انسانها بتواند مقدار ، LD_{0./۶}, از حدود Gy تا Gy برساند (جدول ۳). مقدار ، LD_{0./۶} به حدود و Gy تا Gy برساند (جدول ۳). مقدار ، LD_{0./۶} بعد از حادثه چرنوبیل ۸/۸۸ گری گزارش گردید. البته بسیاری از افراد در آهنگ دوزهای پایینی تابش دیده بودند (۲۲) و برخی نیز با HSCT تحت درمان قرار گرفته بودند (۲۲).

هنگام بروز انفجار هستهای، منابع محلی قابل دسترس به ازای هر فرد بسیار کم بوده و افراد آسیب دیدهای که بتوانند مراقبتهای پشتیبانی کننده دریافت کنند، درصد کمی از آسیب دیدگان را تشکیل خواهند داد. در مراقبتهای جامع و حرفهای هر فرد آسیب دیده به حدود ۱۰ لیتر مایعات در روز نیاز داشته و نیاز فراوانی به مقادیر قابل توجهی از فر آوردههای خونی خواهد داشت (۴۰).

سایتوکینهای شبه مغز استخوانی (Myeloid Cytokines) باعث ریکاوری بهتر نوتروفیلها در بیماران دچار Neutropenia خواهد شد. ۳ نوع سایتوکین شبه مغز استخوانی توسط FDA (Food and ضد. ۳ نوع سایتوکین شبه مغز استخوانی توسط Drug Administration) که برای مدیریت بیماران تحت شیمی درمانی مبتلا به Neutropenia کاربرد دارند، تأیید شده است. این سایتوکینها وgranulocyte-colony-stimulating factor (G-CSF) و granulocyte macrophage-colony-stimulating factor (GM-CSF) البته استفاده از این سایتوکینها بعد از سوانح هستهای توسط Pegylated G-CSF شوند (۱۳۱).

در متاآنالیزی که داروی G-CSF، بیماران تحت شیمی درمانی برای درمان تومورهای صلب یا لنفوم بودهاند، این دارو توانست مرگ و میر را از ۲/۸٪ به ۱/۵٪ کاهش دهد. با اینکه مقدار خیلی زیادی

نبوده است، اما در هنگام انفجارهای هسته ای که نمی توان تمام آسیب دیدگان را تحت مراقبتهای پیشگیرانه قرار داد و در بیمارستان بستری نمود، استفاده از این دارو می تواند، مفید واقع شود (۴۲). مطالعات انجام شده بر روی نخستیان (انواع میمونها) نشان دهنده سرعت بیشتری در ریکاوری نوتروفیلها در اثر درمان با سایتوکینهای شبه مغز استخوانی بعد از تابشدهی دارد (۶). در ماکاکهای ریسوس، G-CSF و G-CSF زنده ماندن کلی را ۱۴ تا ماکاکهای ریسوس، ۴۲ –۴۲). برخی گزارشها حاکی از آناند که اثر نجات دهنده سایتوکینها در صورتی که در ۲۴ ساعت که اثر نجات دهنده سایتوکینها در صورتی که در ۲۴ ساعت نخست پس از تابشگیری استفاده شوند، بیشینه خواهد بود. البته استفاده از سایتوکینها حتی چندین هفته پس از تابشدهی نیز مفید خواهد بود. اخیراً در ۲ نفر از آسیب دیدگان سوانح هستهای که با سایتوکینها پس از گذشت ۲۸ روز از تابشدهی شروع به درمان نموده اند، مشاهده شده است که Neutropenia به سرعت و به طور کامل درمان شده است (۴۵).

برخی از آسیب دیدگان انفجارهای هستهای به اندازهای دوز تابشی دریافت میکنند که باعث آسیبهای برگشت ناپذیر به مغز استخوانهایشان میگردد. HSCT آلوژنئیک روشی است که می تواند عملکرد خونسازی را برگرداند. ساز و کار HSCT که چگونه می تواند در آسیب دیدگان پر تویی به ویژه در کسانی که این آسیب را همراه با جراحت یا سوختگی دارند، باعث زنده ماندن و بهبودی شود، ناشناخته است. در مدلهایی حیوانی نیز HSCT باعث بهبود در زنده ماندن شده است (۳۸). تا به امروز ۳۱ نفر از آسیب دیدگان پر تویی که تابش گیری در کل بدن داشتهاند، با HSCT آسیب دیدگان پر تویی که تابش گیری در کل بدن داشتهاند، با HSCT تحت درمان قرار گرفتهاند. زمان میانه زنده ماندن بعد از پیوند در میان بیماران حدود ۱ ماه بود. تنها ۴ بیمار ۱ سال بعد از TSCH زنده ماندند. همه این ۴ بیمار نیز پیوند را پس زده و دوباره شروع به

نایی ۵۳

خونسازی نموده بودند که نشان از منفعت اندک این روش دارد. در میان این ۳۱ بیمار، تنها ۲۰٪ از مرگ و میر به دلیل بیماریهای مربوط به پیوند و میزبان بوده است (۴۶، ۴۷). بنابراین شواهدی که نشان دهد HSCT می تواند در انسانهایی که دچار تابش گیری شدهاند، مفید واقع شود در دسترس نمی باشند.

بحث و نتیجه گیری

اثرات بیولوژیکی به وجود آمده به دنبال سوانح تشعشعی و انفجار هستهای، سندرمهای حاد تشعشعی را در پی دارند، معمولاً در انفجارهای هستهای، سوختگی و جراحت نیز در بیشتر افراد همراه با آثار رادیوبیولوژیکی مشاهده می گردد که باعث تشدید اثرات کشنده در آسیب دیدگان پرتویی خواهد شد. تابش گیری فردی بیش از Gy ۲ به کل بدن، باعث ایجاد سندرمهای تابشی (آثار قطعی پرتو) خواهد شد که شامل سندرم خونی، سندرم سیستم گوارشی، سندرم پوستی و سندرم سیستم اعصاب مرکزی و عروقی می گردد. ایجاد و شدت این سندرمها به فاکتورهایی نظیر دوز تابشی، آهنگ دوز، نوع پرتو تابشی (پرتو گاما، پرتو نوترونی، پرتو گاما همراه با نو ترون و...)، حفاظت بخش هایی از بدن در برابر پر تو، سن، جنسیت، حساسیت ذاتی فرد به پرتو و اقدامات پزشکی بعدی برای درمان اثرات پر توهای یونیزان بستگی دارد. مراقبتهای درمانی و پشتیبانی کننده برای بهبود افراد آسیب دیده شامل استفاده از آنتی بیو تیکها، نگهداری فرد در محیط استریل، انتقال خون و فرآوردههای خونی، استفاده از سایتو کینهای شبه مغز استخوانی برای فرد بیمار و HSCT می شود. به دلیل تعداد زیاد آسیب دیدگان بعد از یک انفجار هستهای و محدود بودن منابع در دسترس برای امداد و مراقبتهای بالینی، و همچنین محدودیت در دسترسی به آسیب دیدگانی که در نزدیکی محل وقوع انفجار قرار دارند، نمي توان اين مراقبتها را براي همه افراد آسیب دیده اجرا نمود. بنابراین نیاز است، ابتدا افرادی که باید این اقدامات را برای آنها انجام داد، مشخص نمود. برخی از افراد به اندازهای تابش دیدهاند (دوزهای بیش از ۶ گری به تمام بدن)

که هیچ امیدی برای بقا حتی با انجام بهترین مراقبتهای درمانی موجود نخواهد بود. برخی نیز دچار آسیبهای شدید و قابل کشنده دیگری نظیر انواع جراحات، سوختگی ها و تروماها همراه با تابش گیری شدهاند، که در این افراد نیز شانس بقا بسیار کم خواهد بود. مناسب تر این است که ابتدا با روش های دوزیمتری بیولوژیکی، دوز دریافتی بیمار بررسی شده و همچنین با توجه به علائم بیمار، نوع سندرم حاد تشعشعي وي مشخص شود. معمولاً مي توان گفت تنها سندرمی که فرد شانسی برای بقا خواهد داشت، سندرم حاد تشعشعی خونی است. در دوزهای بالاتر که سندرمهای دیگری نیز بروز میکنند، شانسی برای بقا بیمار وجود نخواهد داشت (۱۰ و ۲۲). پس از دسته بندی بیماران و با توجه به منابع موجود و در دسترس می بایست اقدام به انجام مراقبت های درمانی از بیماران مد نظر نمود. ضروری است که با توجه به منابع محلی و ملی برنامهای جامع برای انجام مراقبتهای درمانی و پشتیبانی کننده تهیه شود تا بتوان هنگام وقوع چنین حوادثی، استفاده بهینهای از منابع موجود داشت، چرا که زمان انجام مراقبتهای درمانی مؤلفه مهمی در اثر گذاری این مراقبتها خواهد داشت. به عنوان مثال زمان تجویز سایتوکینها یا آنتی بیوتیکها برای اثر بخشی بهتر، ۲۴ ساعت اول پس از تابشدهی میباشد. وجود افراد آموزش دیده برای انجام این مراقبتها ضروری می باشد. برنامه ای برای آموزش افرادی که بتوانند هنگام بروز چنین حوادثی وارد عمل شده و مراقبتهای درمانی و پشتیبانی کننده از آسیب دیدگان را به انجام رسانند، ضروری به نظر می رسد. وجود بانک اطلاعاتی ای که شامل اطلاعات منابع در دسترس (میزان و نوع آنها، مکان آنها، در جه در دسترس بو دن آنها و...)، راهنمایی هایی برای انجام مراقبت های درمانی و پشتیبانی کننده و اطلاعات بیماران و آسیب دیدگان سوانح پرتویی باشد، می تواند بسیار کمک کننده واقع شود. باید یادآور شد که در این تحقیق آثار طولانی مدت تشعشع مانند سرطان زایی، تغییرات ژنتیکی، نقص ژنتیکی در نسلهای آینده و ... مورد بررسی قرار نگرفتهاند و تنها اثرات كوتاه مدت تشعشع مد نظر بوده است.

References

- 1- Knebel AR, Coleman CN, Cliffer KD, Murrain-Hill P, McNally R, Oancea V, et al. Allocation of scarce resources after a nuclear detonation: setting the context. Disaster Med Public Health Prep. 2011;5 (S1): S20–31.
- 2- Hall EJ, Giaccia AJ. Radiobiology for the Radiologist [Internet]. Lippincott Williams & Wilkins; 2006 [cited 2016 May 3]. Available from: https://books.google.com/books?hl= en&lr= &id= 6HhjwRyqBzgC&oi= fnd&pg= PR7&dq= Ra diobiology+for+the+Radiologist&ots= 0ujzwGhnE_&sig= xJS0pQHyzO0VQik1BBSWDH4Gw-M
- 3- Fliedner TM, Dörr HD, Meineke V. Multi-organ involvement as a pathogenetic principle of the radiation syndromes: a study involving 110 case histories documented in SEARCH and classified as the bases of haematopoietic indicators of effect. Br J Radiol [Internet]. 2014 [cited 2016 May 3]; Available from: http://www.birpublications.org/doi/ full/10.1259/bjr/77700378
- 4- Andrea L, Maher MA, CDR-USPHS C, Hick MD, John L, Hanfling MD, et al. Radiation Injury After a Nuclear Detonation: Medical Consequences and the Need for Scarce Resources Allocation. 2011 [cited 2016 May 3]; Available from: http://www.inovaideas.org/emergency_articles/7/
- 5- Dainiak N, Waselenko JK, Armitage JO, MacVittie TJ, Farese AM. The hematologist and radiation casualties. ASH Educ Program Book. 2003;2003 (1): 473–96.
- 6- Waselenko JK, MacVittie TJ, Blakely WF, Pesik N, Wiley AL, Dickerson WE, et al. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann Intern Med. 2004;140 (12): 1037–51.
- 7- Friesecke I, Beyrer K, Fliedner TM. How to cope with radiation accidents: the medical management. Br J Radiol. 2001;74 (878): 121–2.
- 8- Zajtchuk R, Jenkins DP, Walker RI, Cerveny TJ, Alt LA, Bogo V, et al. Textbook of Military Medicine. Part 1. Warfare, Weaponry, and the Casualty. Volume 2. Medical Consequences of Nuclear Warfare [Internet]. DTIC Document; 1989 [cited 2016 May 3]. Available from: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA278722
- 9- Milyavsky M, Gan OI, Trottier M, Komosa M, Tabach O, Notta F, et al. A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal. Cell Stem Cell. 2010;7 (2): 186– 97.
- 10- Hick JL, Weinstock DM, Coleman CN, Hanfling D, Cantrill S, Redlener I, et al. Health care system planning for and response to a nuclear detonation. Disaster Med Public Health Prep. 2011;5 (S1): S73–88.
- 11- Cheadle WG, Pemberton RM, Robinson D, Livingston DH,

- Rodriguez JL, Polk Jr HC. Lymphocyte subset responses to trauma and sepsis. J Trauma Acute Care Surg. 1993;35 (6): 844–9.
- 12- Maldonado MD, Venturoli A, Franco A, Nunez-Roldan A. Specific changes in peripheral blood lymphocyte phenotype from burn patients. Probable origin of the thermal injuryrelated lymphocytopenia. Burns. 1991;17 (3): 188–92.
- 13- Fliedner TM, Graessle D, Meineke V, Dörr H. Pathophysiological principles underlying the blood cell concentration responses used to assess the severity of effect after accidental whole-body radiation exposure: an essential basis for an evidence-based clinical triage. Exp Hematol. 2007;35 (4): 8–16.
- 14- Anno GH, Young RW, Bloom RM, Mercier JR. Dose response relationships for acute ionizing-radiation lethality. Health Phys. 2003;84 (5): 565–75.
- 15- Ziqiang P, Binglin X. United nations scientific committee on the effects of atomic radiation (UNSCEAR) and its forty-ninth session. 2000 [cited 2016 May 3]; Available from: https:// inis.iaea.org/search/search.aspx?orig q=RN: 32012014
- 16- Kishi HS, others. Effects of the "special bomb": recollections of a neurosurgeon in Hiroshima, August 8–15, 1945. Neurosurgery. 2000;47 (2): 441–6.
- 17- lijima S. Pathology of atomic bomb casualties. Acta Pathol Jpn. 1981;32: 237–70.
- 18- Dainiak N, Ricks RC. The evolving role of haematopoietic cell transplantation in radiation injury: potentials and limitations. Br J Radiol [Internet]. 2014 [cited 2016 May 3]; Available from: http://www.birpublications.org/doi/full/10.1259/bir/31003240
- 19- ORISE: Radiation Emergency Assistance Center/Training Site (REAC/TS) [Internet]. [cited 2016 May 3]. Available from: http://orise.orau.gov/reacts/
- 20- Williams JP, Brown SL, Georges GE, Hauer-Jensen M, Hill RP, Huser AK, et al. Animal models for medical countermeasures to radiation exposure. Radiat Res. 2010;173 (4): 557–78.
- 21- Barbero AM, Frasch HF. Pig and guinea pig skin as surrogates for human in vitro penetration studies: a quantitative review. Toxicol In Vitro. 2009;23 (1): 1–13.
- 22- Hopewell JW. The skin: its structure and response to ionizing radiation. Int J Radiat Biol. 1990;57 (4): 751–73.
- 23- Haus E. Chronobiology of the mammalian response to ionizing radiation potential applications in oncology. Chronobiol Int. 2002;19 (1): 77–100.
- 24- Hall JE, White WJ, Lang CM. Acidification of drinking water: its effects on selected biologic phenomena in male mice. Lab Anim Sci. 1980;30 (4 Pt 1): 643–51.
- 25- Ledney GD, Elliott TB, Moore MM. Modulation of mortality by tissue trauma and sepsis in mice after radiation injury

- امین بنایی
 - [Internet]. DTIC Document; 1992 [cited 2016 May 3]. Available from: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA253133
- 26- Brooks JW, Evans EI, Ham Jr WT, Reid JD. The influence of external body radiation on mortality from thermal burns. Ann Surg. 1952;136 (3): 533.
- 27- Alpen EL, Sheline GE. The combined effects of thermal burns and whole body x-irradiation on survival time and mortality. Ann Surg. 1954;140 (1): 113.
- 28- BAXTER H, DRUMMOND JA, Stephens-Newsham LG, RANDALL RG. Studies on Acute Total Body Irradiation in Animals: 1. EFFECT OF STREPTOMYCIN FOLLOWING EXPOSURE TO A THERMAL BURN AND IRRADIATION. Plast Reconstr Surg. 1953;12 (6): 439–45.
- 29- Korlof B. Infection of burns. I. A bacteriological and clinical study of 99 cases. II. Animal experiments; burns and total body x-irradiation. Acta Chir Scand Suppl. 1956;209: 1.
- 30- Yan Y, Ran X, Wei S. Changes of immune functions after radiation, burns and combined radiation-burn injury in rats. Chin Med Sci J Chung-Kuo Hsueh Ko Hsueh Tsa ChihChinese Acad Med Sci. 1995;10 (2): 85–9.
- 31- Mishima S, Yukioka T, Matsuda H, Shimazaki S. Mild hypotension and body burns synergistically increase bacterial translocation in rats consistent with a" two-hit phenomenon". J Burn Care Res. 1997;18 (1): 22–6.
- 32- Whitnall MH, Elliott TB, Harding RA, Inal CE, Landauer MR, Wilhelmsen CL, et al. Androstenediol stimulates myelopoiesis and enhances resistance to infection in gamma-irradiated mice. Int J Immunopharmacol. 2000;22 (1): 1–14.
- 33- Baranov AE, Guskova AK, Nadejina NM, Nugis Vy. Chernobyl experience: Biological indicators of exposure to ionizing radiation. Stem Cells Dayt Ohio. 1995;13: 69–77.
- 34- MacVittie TJ, Farese AM, Jackson III W. Defining the full therapeutic potential of recombinant growth factors in the post radiation-accident environment: the effect of supportive care plus administration of G-CSF. Health Phys. 2005;89 (5): 546–55.
- 35- Furth FW, Coulter MP, Miller RW, Howland JW, Swisher S. The Treatment of the Acute Radiation Syndrome with Aureomycin and Whole Blood [Internet]. Atomic Energy Project, Univ. of Rochester; 1952 [cited 2016 May 4]. Available from: http://www.osti.gov/scitech/biblio/4376726
- 36- Perman V, CRONKITE EP, BOND VP, SORENSEN DK. The regenerative ability of hemopoietic tissue following lethal x-irradiation in dogs. Blood. 1962;19 (6): 724–37.
- 37- Jackson DP, Sorensen DK, Cronkite EP, Bond VP, Fliedner TM. Effectiveness of transfusions of fresh and lyophilized platelets in controlling bleeding due to thrombocytopenia. J

- Clin Invest. 1959;38 (10 Pt 1-2): 1689.
- 38- Ledney GD, Elliott TB. Combined injury: factors with potential to impact radiation dose assessments. Health Phys. 2010;98 (2): 145–52.
- 39- Baranov A, Gale RP, Guskova A, Piatkin E, Selidovkin G, Muravyova L, et al. Bone marrow transplantation after the Chernobyl nuclear accident. N Engl J Med. 1989;321 (4): 205–12.
- 40- Ishii T, Futami S, Nishida M, Suzuki T, Sakamoto T, Suzuki N, et al. Brief note and evaluation of acute-radiation syndrome and treatment of a Tokai-mura criticality accident patient. J Radiat Res (Tokyo). 2001;42 (Suppl): S167–82.
- 41- Murrain-Hill P, Coleman CN, Hick JL, Redlener I, Weinstock DM, Koerner JF, et al. Medical response to a nuclear detonation: creating a playbook for state and local planners and responders. Disaster Med Public Health Prep. 2011;5 (S1): S89–97.
- 42- Kuderer NM, Dale DC, Crawford J, Lyman GH. Impact of primary prophylaxis with granulocyte colony-stimulating factor on febrile neutropenia and mortality in adult cancer patients receiving chemotherapy: a systematic review. J Clin Oncol. 2007;25 (21): 3158–67.
- 43- Neelis KJ, Hartong SC, Egeland T, Thomas GR, Eaton DL, Wagemaker G. The efficacy of single-dose administration of thrombopoietin with coadministration of either granulocyte/ macrophage or granulocyte colony-stimulating factor in myelosuppressed rhesus monkeys. Blood. 1997;90 (7): 2565–73.
- 44- Neelis KJ, Dubbelman YD, Qingliang L, Thomas GR, Eaton DL, Wagemaker G. Simultaneous administration of TPO and G-CSF after cytoreductive treatment of rhesus monkeys prevents thrombocytopenia, accelerates platelet and red cell reconstitution, alleviates neutropenia, and promotes the recovery of immature bone marrow cells. Exp Hematol. 1997;25 (10): 1084–93.
- 45- Gourmelon P, Benderitter M, Bertho JM, Huet C, Gorin NC, De Revel P. European consensus on the medical management of acute radiation syndrome and analysis of the radiation accidents in Belgium and Senegal. Health Phys. 2010;98 (6): 825–32.
- 46- Weisdorf D, Chao N, Waselenko JK, Dainiak N, Armitage JO, McNiece I, et al. Acute radiation injury: contingency planning for triage, supportive care, and transplantation. Biol Blood Marrow Transplant. 2006;12 (6): 672–82.
- 47- Jackson IL, Vujaskovic Z, Down JD. Revisiting strain-related differences in radiation sensitivity of the mouse lung: recognizing and avoiding the confounding effects of pleural effusions. Radiat Res. 2010;173 (1): 10–20.