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Abstract

Introduction: In medical studies, we are often confronted with data that have been collected
longitudinal or cluster. The generalized Linear mixed models that had been developed from
the generalized linear models and linear mixed models- are useful methods for analyzing
such data. In this paper, we introduced this models and their estimation methodologies using
examples of their application in the medical field.

Methods and Materials: The data of this study were related to 8525 lung cancer patients
that mixed logistic regression model was used for the analysis with R software version 3.0.1
by Laplace method.

Results: Regression analysis showed that age, level of experience of doctors and cancer
stage were factors affecting on recovery of patients. Individual and not measured factors
covered 4.03 variation of response variable.

Conclusion: Generalized linear mixed models include a wide range of data, but many
researchers ignored the random effects due to the lack of familiarity with these models. This
mistakenly leads to some parameters have significant meanings. Correct use of these models
leads to prevent many false results.
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