تهیه داربست سلولی از جنس زلاتین - کیتوسان: مدلی گاربردی در مهندسی بافت

چکیده

سایه‌های و هدف: زلاتین و کیتوسان به عنوان پیلیمرهای زیست‌سازگار و زیست تغیرپذیر پذیرفته شده‌اند. این پیلیمرها از یک نوع ماده تجدیعی با جستجوی منابع انرژی معتبر به بررسی شناخته و در مهندسی و مواد و روش‌ها: این تحقیق یک مطالعه موری (Review Article) می‌باشد که با چستجوی منابع انرژی معتبر به بررسی شناخته و کاربرد داربست‌های پلیمری در زمینه‌های مختلف پزشکی پدیده است. نتیجه‌گیری: پلیمرهای زایشی زلاتین-کیتوسان می‌توانند به عنوان مدلی مناسب از یک داربست زیست تغیرپذیر پذیر در مهندسی پافت و سلول درمان مورد استفاده قرار گیرد.

کلمات کلیدی: داربست، زلاتین، کیتوسان، سلول‌های بنیادی، مهندسی بافت

مقدمه

در طول تاریخ بشر علم پزشکی با افكار و تصورات زبرگ و شجاعت پیشگامان عضیف بوده است و همچنین می‌باید به کشف یکی از آن‌ها با جایی و پردازندگی مانند سلول‌های پنی با وضعیت در فیزیولوژی شدن سلول‌های ماکور بعد از قرار گرفتن در بانف با موضوع هدف می‌باشد. با یک پدیده در داربست‌های سلول‌های می‌توان این مشکل را حل کرد. امکان‌گذاری ایجاد داربست‌های مناسب است که ضمن ثابت نکردن سلول‌ها در موقعیت نامتوازنی و نوسان سلول‌های بنیادی و همچنین سلول‌های و بافت‌های هدف نداشته باشد و در صورت لزوم به راحتی بتوان آن را حذف با خنثی نمود. به نظر می‌رسد بیولوژی‌ها به دلیل یوند قوت زیست سازگاری و زیست تغیرپذیر پدیده‌های مناسبی جهت تهیه غشا و داربست‌های سلولی به حساب می‌آیند که غشا کیتوسان به همراه زلاتین یکی از بهترین انتخاب‌ها در این زمینه می‌باشد. سلول‌های بنیادی را به عنوان سلول‌های می‌شناسند که علاوه بر بازسازی خدو در شرایط خاص قارید به تبدیل به انواع دیگری از
استروئومیا مغز استخوان مسح صحرایی را بررسی نماید.

مواد و روش‌ها

انواع مختلف از مواد زیست‌سازگاری برای تهیه دارماستی سلولی در مهندسی بی‌بیس آشنایی شده است که در میان آن‌ها پلیمرهای طبیعی به طور وسیع در علوم جراحی بررسی شده‌اند. پلیمرهای پیلورولیک مناسب و زیست‌تحتی برخی یکی از بهترین انتخاب‌های ما می‌باشند. در میان پلیمرهای طبیعی کیتوسان، کلاژن، زئولیت و هیالورونیک اسید پرکاربردترین مواد در ساخت دارماست و غذا باشند (۹).

کارخانه‌کوبی مولکولی در نظر گرفته می‌گردد که در آن انتخاب متفاوت است. بی‌بیس یا فاکتورهای درون‌ساخته می‌شود (۳).

مواد متنوعی برای گیاه و دارماستی مختلف استفاده شده است. یکی از مواد پلیمرها باشند که به طور متفاوت با به‌طور مختلف طبیعی و سندرم زیست‌سازگاری و غیر زیست‌سازگار دسته‌بندی می‌شوند. نتایج تحقیقات و تجربیات گواوگان نشان داده که پلیمرهای طبیعی دارای اثرات زیست‌سازگاری بیشتری نسبت به پلیمرهای سندرم‌پذیر هستند. کیتوسان یک نوع پلیمر طبیعی است که به طور وسیع در علوم جراحی تهیه می‌شود. تحقیق‌هایی نشان‌دهنده است که در دو دسته اصلی استفاده‌ای کیتوسان خاصیت‌های به‌اندازه‌ای زیست‌سازگاری دارد.

در سال ۲۰۰۳، دارماست کیتوسان - کلاژن از طریق پروتئین و زئولیت را به‌طور خوبی به‌جای گرفت. آن‌ها محققین گزارش داده‌اند که می‌تواند کلاژن‌های به‌صورت کامپوزیت در دارماستیای طبیعی را پاییز کننداژنه‌ای را افزایش دهد که در حدود ۱۰ تا ۱۵ درصد زیست‌سازگاری آمیزه در نظر مولکولی است (۸).

استحکام کافی این ماده است. همچنین زئولیت در محیط بدن به‌عنوان پایداری از این دسته است و بر سرعت دچار تخریب می‌شود که به‌همین دلیل تمرکز داده می‌شود به‌صورت کامپوزیت با مواد دیگر استفاده مورد قرار گرفته (۶).

از طرف دیگر جهت بهبود خواص مکانیکی و پولیمری کیتوسان ترکیبی از با بی‌بیس در مطالعه قرار گرفته است و در نهایت زئولیت برای بهبود فعالیت پولیمری کیتوسان به آن اضافه می‌شود (۴). به‌طور مثال، یکی از روش‌های برای استفاده در سلول درمانی، کاربرد تولید سلول هپاتوپتی‌های همراه با ماده زیست تخریب‌پذیر می‌باشد. این مطالعه حاضر قصد دارد تأثیرات غیراین‌راین‌کیتوسان به‌عنوان یک دارماست در پر کردن سلول‌های ریسیلیانس و هدایت ناشی از تزریق می‌باشد.
اسید استیک تهته کردن و بعد سولاهای فیبرولاست را بر روی آن کشت داده. نتایج نشان داد سولاهای بروی ترکیب مادگی
نتیجه به فیلوهای کبیتسا خلاص و زاپین خلاص تبدیل و
رشد پیشروی دارد ضمن اینکه هرگونه اثر مادی بر
سولاهای ندارد (15).
در مطالعه دیگر Kims در سال 2005 (cpc) در ۱۰۰۰ قلم ترکیب
کبیتسا-زلاتین را به وسیله اتصال دهنده پروآنتیوان‌فایبرکین
شکل گرفته را ساختمان و ضمین بررسی فیزیکی و شیمیایی
این کامپوزیت، سولاهای اسکام از استخراج و را راوی آن
کشت داده. نتایج حاکی از عدم سیستم ترکیب کبیتسا-زلاتین
و مناسب بودن آن بهبهان مهندسی بالاتر بود (16).
Fridenstein, L. (1969). Bone mesenchymal stem cells: A functional unit of
formation of cartilage and bone. J. Cell. Physiol. 73, 213-228.

- سولاهای نباید: این سولاهای نباید توسط
- و همکارانت در سال 1976 شناخته و معرفی گردد. آنها این
سولاهای با سولاهای دیگر، کلمات، غیر فاگوسیتوژ
انکره و از ظرفیت نشان دهنده پروآنتیوان‌فایبرکین
کبیتسا-زلاتین و کبیتسا-زلاتین ترکیب به یک
سولاهای تشکیل می‌دهند. شیب این سولاهای برای
سوزن‌کردن فیبرولاست سازگار است (13). همچنین
فیبرولاست در پژوهشی سیستم ترکیب زاپین-کبیتسا با درصد
و زنی ای در (1) به وسیله اتصال بی‌طرف پیوندی در مجاورت
سولاهای فیبرولاست انسان بررسی کرده. نتایج حاکی از عدم
سمیت سولاهای سازگار با (25٪) گلیترالرکنه
در میجه

در مطالعه دیگر Zang در سال 2012 از سوزن‌کاری
و زنتی خصیب پذیری ترکیب کبیتسا-زلاتین-زاپین اسید را
به صورت in vitro و در ۱۰۰۰ قلم ترکیب کبیتسا-زلاتین و کبیتسا-زلاتین اسید ساخته و سولاهای
این برای قطع دندان و سر و ساخت و گسترش سیستم

برای شبکه و سیستم سازگاری در سال 2012، نتیجه نوید که ترکیب مادرک کاملاً سازگار بوده
و برای یکی از سازگار است (14).

در مطالعه دیگر که داشر کاری از سوزن‌کاری و همکارانت
لایه ناک از ترکیب کبیتسا-زلاتین تولید گردید. در این مطالعه
خصوص مکانیکی ترکیب و همچنین امکان نقش و چسب‌گیری
سولاهای فیبرولاست انسان بر روی آن مورد بررسی قرار گرفت. پژوهشی
آنها فیلیم کبیتسا-زلاتین به وسیله قابلیت کنترل این اثر در پی‌لیم در
سال هم، شیراز، نیکباقر ۱۳۹۰، مسئول ۱۷

مجله علوم پیام‌رسی و بهداشت نئشنال

نیست. از اهمیت بیشتری برخوردار است از این رو امروزه در
اغلب کشورها با کمک یکی از اتصالات ویژه برای جداسازی و نگهداری
برای BMSCs

References

ارشد. دانشگاه مهندسی پزشکی، دانشگاه صنعتی امیرکبیر تهران. ۱۳۸۷.


11- Dutta PK, Kumari R, Joydeep D. Advances in polymer science. 2011;244: 45.


Providing Cell Scaffold Mode of Gelatin_ Chitosan: A Practical Model for Tissue Engineering

Afsane Karami Jooyani*1, Mahdiye Taghizade2, Simin Riyahi3

Abstract

Introduction: Gelatin and Chitosan are known as bio-polymers of biocompatible and biodegradable. These bio-polymers are highly regarded in tissue engineering recently.

Methods: This is a review article that searched the reliable internet sources to evaluate the identification and application of polymer scaffolds in various fields of medicine.

Conclusion: Biopolymers, such as Gelatin_ Chitosan, can be used as an appropriate model of a biodegradable scaffold in tissue engineering and cell therapy.

Keywords: Scaffolding, Gelatin, Chitosan, Stem cells, Tissue Engineering