تفییه بین زن با استفاده از سیستم رتروویروس در سلول‌های کلیدی SHIP2

ضارکانی، نوروزیجانی، رضا مشکانی
بان‌ای این فاسفاتاز که دارای فعالیت کاتالیتیک و فاسفاتازی بوده، با روش‌های مختلف به‌کار رفته از فاسفاتهازی بوده، به‌عنوان Fas-T ... علائم ماد، این دو نوع چندگی روند اول تولید به غلط ایجاد می‌کند. گروه SHIP2 در میزان فعالیت این آنزیم می‌تواند باعث ایجاد مقاومت به انسولین شود. این فاسفاتهاز SHIP2 در مراجعات گروه دوم همچنین فاسفاتهاز SHIP2 در مراجعات گروه دوم مربوط به بیماری‌های تاثیرگذار به طرف دیگر باعث ایجاد مقاومت به انسولین نمی‌شود. گروه دوم همچنین فاسفاتهاز SHIP2 در مراجعات گروه دوم مربوط به بیماری‌های تاثیرگذار به طرف دیگر باعث ایجاد مقاومت به انسولین نمی‌شود.
میزان تولید کندنی ویروس (2393) به روش شیمیایی کلیمی pBABE-GFP، سفته‌ای انجام شد. جهت تأیید انتقال وکتور، از وکتور استفاده شد. پس از انتقال وکتور، سولو به وسیله Trans متسبب در سولو سلول‌های SHIP2 می‌کرد. در سطح هیپ‌گیت و سیس محفظه روبی سلول حاوی ویروس به گیاهی افزایش کارایی و تغییر ویروس، مایع جمع آوری شده حاوی ویروس به وسیله اولتراسانترالفیز تغییر گردیده و حجم به یک میلی‌لیتر رسانده شد. سپس برای تأیید تولید ویروس، در حضور پلی‌پر و ویروس به سلول 32789 ترانسدکت شد. وجود رنگ فلوسنس سیز سپس از دو روز مواجهه سلول با ویروس تا درارو تولید ویروس می‌باشد. پس از تأیید تولید ویروس و تغییر آن با اینتریوروس حاوی عون‌کننده می‌باشد. سپس ویروس تولید شده حاوی GFP به همراه ویروس‌های تولید شده، با دیگر وکتورها به سلولهای HEP2 ترانس دکت شدند.

در نهایت ویروس توسط سلول Hep2 از انتهای سبز فلوسنس سبز pBABE-GFP توسط میکروسکوب فلوسنس مورد تا درارو تولید شده. از انضیبی که وکتور ویروس در تولید از آن دارای توانی مقاومت به پورومایسین می‌باشد، جهت انتخاب سلول‌های حاوی ویروس،

شکل 1- تأیید انتقال وکتور به سلول 2393 ویروس با بهره‌برداری از فلوسنس سبز pBABE-GFP
حضور آنژولین به عنوان فعال کننده مسیر انتقال پیام انسولین، به ترتیب به میزان 0/36 و 0/51 در 2/1 به‌این‌ترنت به میزان Akt میزان فسفومیزیون SHIP2 استفاده گردد. گفتگوی است که برای تأیید کارایی SHIP2 سپس سیستمی داخل سلولی می‌باشد. هم‌انجام که در شکل 25 ملاحظه می‌شود، میزان فعالیت Akt تا 35 گزارش شده باشد.
پیشینه و نتیجه گیری

دیابت نوع ۲ شایع ترین بیماری محیطی است که با کاربردی بسیار متفاوت می‌باشد و بی‌توجهی به سیر پیشرفت این بیماری در مرحله‌های مختلف یا جریان زمانی در گستره‌های مختلف نیاز به مطالعات بیان‌پذیر فیزیولوژی این بیماری می‌باشد. محققان به این روی از سیستمی مطالعاتی با فیوزیولوژیک بین‌دردست بیماری دیابت نوع ۲ مطرح می‌باشند.

یکی از حاوی‌ها و منابع مطالعه مکانیسم سلو دن شیپ ۲ است. به نظر سیستمی مماکولوی مقاله، این مقاله از نظر عملکرد و طبقه ناشی از زندگی و نگاه‌های شیم‌پات‌های ایجاد کننده مهاجری انسولین باشد. گرچه نتیجه از این خود عامل زنده‌گی این مقاله است. به نظر اضافه‌ترین ۲/۱۲ برابر بیشتر (GFP) و GSH-WT به ترتیب به میزان ۲/۱۲ و ۲/۱۴ برابر بیشتر فیوزیولوژیک سولون از طریق کاهش میزان انزیم اسیدهای چرب آزاد گردیده‌های خون و همچنین از طریق تأثیر مستقیم بر کل P P H G T

اثر فعالیت SHIP ۲ در حالت فیوزیولوژیک سولون از طریق کاهش میزان اسیدهای چرب آزاد گردیده‌های خون و همچنین از طریق تأثیر مستقیم بر کل P P H G T

اثر فعالیت SHIP ۲ در حالت فیوزیولوژیک سولون از طریق کاهش میزان اسیدهای چرب آزاد گردیده‌های خون و همچنین از طریق تأثیر مستقیم بر کل P P H G T

اثر فعالیت SHIP ۲ در حالت فیوزیولوژیک سولون از طریق کاهش میزان اسیدهای چرب آزاد گردیده‌های خون و همچنین از طریق تأثیر مستقیم بر کل P P H G T

اثر فعالیت SHIP ۲ در حالت فیوزیولوژیک سولون از طریق کاهش میزان اسیدهای چرب آزاد گردیده‌های خون و همچنین از طریق تأثیر مستقیم بر کل P P H G T

اثر فعالیت SHIP ۲ در حالت فیوزیولوژیک سولون از طریق کاهش میزان اسیدهای چرب آزاد گردیده‌های خون و همچنین از طریق تأثیر مستقیم بر کل P P H G T

اثر فعالیت SHIP ۲ در حالت فیوزیولوژیک سولون از طریق کاهش میزان اسیدهای چرب آزاد گردیده‌های خون و همچنین از طریق تأثیر مستقیم بر کل P P H G T

اثر فعالیت SHIP ۲ در حالت فیوزیولوژیک سولون از طریق کاهش میزان اسیدهای چرب آزاد گردیده‌های خون و همچنین از طریق تأثیر مستقیم بر کل P P H G T

اثر فعالیت SHIP ۲ در حالت فیوزیولوژیک S
References

15. Gorgani-Firuzjaee, S., K. Adeli, and R. Meshkani, Inhibition of SH2-domain-containing inositol 5-phosphatase (SHIP2)

Changes in Gene Expression SHIP2 (SHIP2 Domain Containing Inositol 5-Phosphatase) with the Use of HepG2 Liver Cell Rtryrvyrvsdr

Sattar Gorgani Firoozjaei¹, Reza Meshkani²

Abstract

Introduction: Dyslipidemia is one of the risk factors of cardiovascular disease in diabetics. Dyslypydymy is diagnosed by increasing in plasma triglyceride density, decreasing HDL Cholesterol, and increasing LDL especially small LDL. Several evidences from human and animal studies indicate that the role of insulin resistance is a major cause of hypertriglyceridemia in diabetics and people with metabolic syndrome, respectively. Hepatic lipogenesis and the production of rich lipoproteins from triglyceride are set by the inositol phosphatidylinositol kinase (PI3K). However, the negative regulator of route SHIP2 is not well defined in this process (hepatic lipogenesis).

Materials and Methods: In this study, the gene expression SHIP2 has been modified by the retroviruses system and the function of intracellular insulin signaling has been studied.

Findings: The results show that increasing in expression SHIP2 is lead to decreasing in AKT phosphorylation as one of the mediators of insulin signaling; in addition, reducing performance of SHIP2 increase the AKT phosphorylation and improves the intracellular insulin signaling in the liver cells Hep G2.

Discussion and Conclusion: Based on the key role AKT phosphorylation in glucose metabolism and lipid, cell models produced can be used in the studies of metabolism of lipids and lipoproteins.

Keywords: Gene SHIP2, insulin signal transduction and lipogenesis

1- (*Corresponding author) Department of Laboratory Sciences, Faculty of Paramedicine, AJA University of Medical Sciences, Tehran, Iran. Postal code: 1411718594
2- Department of Laboratory Sciences, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran